Power Set Preserves Intersection

Theorem

For any sets \(A\) and \(B\),

\[ \mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).\]
Proof
\[\begin{align*} x \in \mathcal{P}(A \cap B) &\iff x \subseteq A \cap B \\ &\iff x \subseteq A \quad \text{and} \quad x \subseteq B \\ &\iff x \in \mathcal{P}(A) \quad \text{and} \quad x \in \mathcal{P}(B) \\ &\iff x \in \mathcal{P}(A) \cap \mathcal{P}(B) \\ \end{align*}\]